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FOREWORD

This report was prepared in fulfillment of the requirements of NASA
contract NAS8-29193. George C. Marshall Space Flight Center was the con-
tracting agency. Technical Coordination was maintained through Dr. Steve

Winder, Chief, Statistical Dynamics Sectiom, S&E-AERO-DDD.
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ABSTRACT

An investigation was made of the problems of excess control devices and
insufficient trim control capability on shuttle ascent vehicles. The trim
problem is solved at all time points of interest using Lagrangian multipliers
and a Simplex based iterative algorithm developed as a result of the study.
This algorithm has the capability to solve any bounded linear problem with
physically realizable constraints and minimize any piecewise differentiable
cost function. Both solution methods also automatically distribute the com-

mand torques to the control devices.

It is shown that trim requirements are unrealizable if only the orhiter
engines and the aerodynamic surfaces are used. On the other hand if the solid
engines are controllable there is ample control margin and realistic cost

functions can be minimized to optimize the solution.
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Section |
INTRODUCTION

This report presents the results of a étudy to develop a technique to
solve the trim problem of an aerospace vehicle when the number of control
variables exceeds the number of variables to control trim. Distribution of
the trim commands to the various control variables in some "optimum” manner
is a further goal of the study. The goal of the study is not a computer.
preogram as much as it ié the development a practical method of understanding

and solving the trim problem.

The importance of solving this type problem bécame evident as the Space
Shuttle vehicle requirements were established. 1In particular, the ascent phase
of flight is one area in which these problems arise. In ascent the mated
configuration has only one plane of symmetry causing the inherent problem of
zero 1ift and zero moment occurring at different angles-of-attack. C(Cross=-

coupling problems are also severe in some candidate designs}

Several candidate configurations have insufficient contrel authority to
control the vehicle in the presence of headwinds or crosswinds with orbiter
engines only. When the aerodynamic surfaces on the orbiter are used, the
shuttle may or may not be controllable, but in any case the number of control
effectors beéomes greater than the number of states to control, creating an
infinity of trim seclutions for any constant disturbance. If controllability
problems require vectoring the solid-rocket motors, the number of trim

combinations proliferate.

The specific goal of this study was to solve the problem of distributing
the trim commands to the various contrellers, simultaneously using the extra
contrel choice latitude to optimize some phase of the ascent flight. Further
goals were that the solution to the trim prpbiem be simple and easily imple-
mented and that the solution process give the engineer a "foel" for the rela-
tive difficulty of meeting the trim requirements as compared to the trim power

available.

1-1
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0f equal importance to solving this problem is the delineation of the
concepts involved in its solution. Since the sample problems chosen are
realistic, a computer program was necessary to handle the data efficiently,

but the ideas behind the program receive the emphasis throughout this report.

The problems that arise in trimming the Shuttle ascent vehicle are pri-
marily in the roll/yaw planes. The shuttle lateral plane trim problem can be
outlined in the following manner.

e There are three vehicle state variables: roll, yaw, and sideslip
angle. :

e There are eight control 'devices with effectiveness in the lateral
plane. three orbiter engines, two solid-booster engines, right and
left aileron and a rudder. Each engine has two degrees of freedom
(pitch and yaw); however, the top orbiter engine is on the vertical
.centerline of the vehicle (049 data). Therefore, it has no effect on
the lateral dynamics when it is pitched. The net result is 12 control
states in the lateral plane.

e All control devices are limited by control stops or hinge moments or
both.

e The problem is to find the range of control effector settings that
satisfy the trim requirements on the states in some optimum manner.
The reascon for selecting the trim problem to optimize the control devices is
that Shuttle command torques and forces were currently unknown. Therefore,
trimming an aerodynamic disturbance, such as a mean wind, is a convenient sub-
stitute for a torque command profile. The results of this study will give not
only a trim solution, optimum in some manner, but a mechanization of the dis-

tribution of commands to the control devices to achieve a given flight state.

Figure 1-1 illustrates the - approach described in the previous paragraph.
~ The Tc quantities represent the torque command pfofile. The optimization
scheme should be independent of the torque commands so that the guidance design
functions and control design functions can proceed somewhat independently of

each other until system integration time.

The general problem can be stated formally as follows:
minimize

m(éj)
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DISTURBANCE c OPTIMUM
SCHEME

PLANT

~{ FEEDBACK )

Figure 1-1. FEEDBACK DIAGRAM SHOWING OPTIMU_M SCHEME

subject to the trim constraints

i
i=1,2, ..., m
i=1, 2, ..., n

and inequality constraints

S, <68, <8,
292

min Jmax

where the T, represent a torque command of a disturbance vector.

In the Shuttle trim problem considered, the ¢i(6j) can be represented by
a set of i linear equations and thg Tc, are just constants. This means that
the equation involving ¢i(5j)'can be sdlved for 1 6j's if j-1 Gj's are chosen
beforehand. The boundaries of the problem can be explored by setting j-i con-

trol settings on the bounds and calculating the remaining i control variables.

Data for a Shuttle type vehicle were furnished by the COR. These data
are presented in Appendix A. The configuration is similar to the 049 config-
uration with a 400—-ft2 forward fin to reduce the lateral stability. No drag
data for the aerodynamic surfaces were included, but the rudder drag coeffi-
cient was estimated from wind tunnel data on later configurations. The aileron
drag coefficient was assumed to be equal to the rudder for the purposes of this
study. No aileron side force coefficient was included in the data either,

but this turned cut to be unnecessary for the problems solved.

1-3
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The position limits for the rudder and aileron are shown in the data as
well as the hinge moment limits for these surfaces at various, flight times.
The engine gimbal stop limits were assumed to be 10 degrees circular displace-
ment forrthe orbiter engines and 10 degrees diagonally up or down for the
solid-rocket motors. No data on engine hinge moment limits were available so
they were not considered in the problem solution. However, the method of
solution used would handle this type of restriction with a simple data change,

The mean cross-wind was used as a disturbance for much of the study (Appendix
A). |

Figure 1-2 shows the mean crosswind included roll/yaw torques (normalized
by dividing by a sb) at times 25-90 seconds. As can.be seen, the yaw torque
peaks at 60-65 seconds and the roll torque peaks at about 70 seconds. However, .
dynamic pressure peaks at 80 seconds so the maximum controllability problem
occurs around 75~80 seconds. It is impossible to predict the exact time in
advance, since the control problem also depends on the individual control
effectiveness and their proportional roll/yaw effectiveness. These parameters

are functions of thrust, dynamic pressure and Mach number.

The approach and results section presents in somewhat chronological
order the approaches taken and the results achieved in the study., Specifics
involving data, some of the mathematical developments, and the computer program -

‘developed are included in the Appendices.

1-4



NORTHROP SERVICES, INC.

TR-1246

TORQUE COMMANDS
(MEAN CROSSWIND)
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Figure 1-2. MEAN CROSSWIND INDUCED ROLL/YAW TORQUES FROM 25-90 SECONDS
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Section 11
APPROACH AND RESULTS

The trim problem was approached by first formulating the constraints and
limits for the control effectors in a form suitable for aﬁalysis. Then, to
give the investigator a feel for the problem, several optimized trim solutions
were calculated for special cases. After sufficient feel was obtained, the
optimization problem was solved using a quadratic cost function. This problem
has been solved many times and it can be shown that any cost functional that
can be represented by a quadratic'cost function can be solved by Lagrangian
multipliers, the techmique used in this part of the study. Several sample
problems were reduced by this method with the objective of giving additional
insight intd the problem. Since the Lagrangian multiplier technique cannot
directly handle inequality constraints, this approach does not guarantee a
realizable solution even if one is available. Therefore, the next step in the
approach was to develop a means of solving the trim problem with inequality

constraints and with a general form cost functional.

Several methods were available to solve bounded problems with nonquadfatic
cost functions. All of them, except in special cases, require iteration to
reach their solution. It was decided that a solution algorithm based on the
simplex algorithm would be conceptually the simplest to implement. The advan-
tage of simplex in the solution of the trim problem is that it can be treated
as a black box which simultanecusly solves the 6ptimization problem with more

variables than equations and keeps the solution within the variable bounds .

Several sample problems were solved by this method and the results eval-
vated. Finally, a dynamic survey was performed to give a feel for the inter-

action of the Shuttle dynamics with the control trim minimization scheme.

2.1 EVALUATION OF TRIM BOUNDARIES
The solution to the trim problem (zero torques and forces) is an indefinite
set of control trim placements, In fact there are an infinity of selutions,

since there are fewer equations than. control variables. However, the unknown

2-1
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control variables are limited in their displacements so the set of possible

solutions can be regdrded as a bounded, infinite set.

Figure 2-1 shows some of the boundaries of the trim solution as calculated
for 80 seconds flight time. This figure gives an indication of the relative
trim tofques available at 80 seconds flight time. As can be seen, each control
device was placed individually on its limit and the other control trim settings
were computed. Since the possible trim solutions of 11 gontrol devices form a
volumeé in ll-space it is impossible to show graphically; but the points shown
in Figure 2-1 represent points on the boundary of the 11 volume. Since engines
two and three do not pitch in the solutions and since they yaw about 75 percent

of engine one they are not shown on. their limits.

Figure 2-2 shows the minimized control trim settings when each control
device was shut out individually. This shows that the vehicle has sufficient
coptrol power for trim with any omne controller ocut as long as the SRMs have

TVC. It also shows that the aileron has little effect on the trim requirements

since deletion of the aileron does not appreciably change.

2.2 TRIM PROBLEMS WITH QUADRATIC COST FUNCTIONS

A quadratic cost functional is a function made up of the sum of the squares
of the variables in the function. The partial derivatives of a quadratic cost
function are linear making the minimization of the cost a linear problem.
Several techniques can be used to solﬁe_such problems exactly but the most

convenient one for this problem was Lagrangian multipliers.

" The Lagrangian multiplier technique will minimize quadratic cost functiens,
giving an exact solution to the trim problem optimiééd with respect to the
cost., Penalty functions can be devised to minimize such things as drag due to
zero surface deflection, thrust gimbal angle, and off-nominal translational

accelerations.
The penalty functions can be accounted for in the cost functional. Defi-

nition of the cost functional depends upon the particular problem being seclved.

In general, this functional is a summation of various cost terms which is to

2-3
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be minimized subject to the comstraints. The individual terms differ from each
other qualitatively and must be weighted in accordance with the requirements

of the investigation. An example cost functional, wy; is defined below:

=K X(DRAG DUE TO ELEVON DEFLECTION) + K x(THRUST GIMBAL ANGLE)
+ K X(RUDDER HINGE MOMENT) + K x(VARIATION OF CONTROLLER FROM
MEDIAN VALUE) + K x(OFF—NOMINAL TRANSLATIONAL ACCELERATIONS)

where the Ki scale factors are selected so that the various terms have the
. proper relative costs. The Kl and K2 terms are included so that the "optimum"

trim solution will not produce excess AV losses. The K3 term prevents a trim
solution which requires an excessively large hydraulic system for rudder
deflections. The K4 term prevents a trim solntion where a control variable
value is close to its maximum limit. The K5 term prevents a solution where
the resultant translational accelerations are greatly different‘from the nomi-
nal values. However, the .investigator must bear in mind that regardless of

the quadratic cost functions devised, it will always reduce to the form

th
because the K terms can always be summed with each other if the 1 control
variable appears in the cost functional more than once., In effect, any study
of quadratic cost functhnals, no matter how exotic they may be, will always

amount to a variation of the aj coefficients, which are just constants.

Since it was desired to develop a generalized techn1que for solving trim
minimization problems and not to perform a sensitivity study on quadratic cost
functions, it was decided ‘to set up and solve a few sample problems to gain
further insight into -the general trim problem. ¥o attempt was made to repre-

sent all possible'penaltf.functions in the cost functional.

The problem was reformulated and Lagrangian multipllers were used to solve
in the following manner: ’

minimize
w(d,) = (a2.8.)
] 3=1 B I
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subject to
)
b, = c. &, ~-T, =20
i i, i
S
i=1, 2, s T
m
Let F=uw+ _E A by
i=1

To minimiie F, set

9F_ _

Y 0
J

i=1, m

This will yield m equations and m + n unknowns since the Ai are not explieitly

known. Switching to matrix notations:

oF 2 , ' |
381 a, 0 51 Cll C]_‘,Z....C:Ln:l ?\l
: =2 L : €1 2. L
3F . o : R . :
T 0 .a ] |8 C "C A
n - n n nl nm n

define §i such. that

let
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T A a1
To =Ty Moo= o)A and 6=

returning to Equation (1) we can solve for §

5= - % o teTa : _ | _ (2)
also

¢ =€ 8 - TC =0 (3
eliminating X

G = el® el el Ty 1) “)

We have solved for § in terms of the C matrix, the penalty matrix i, and the

torque commands T . : ‘ '

An immediate result of using three constraint equations (yaw moment = roll
moment = side force = Q) is that no practical minimum solution was obtainable.
That is, the control settings are greater than the bounds., The zero side force
requirement was the cause of this. When the requirement was dropped the prob-

lem reduced to the following:
minimize

_ 2 2 2 N2 2
w = (alﬁa) +(326R) +(a3ﬁeiy) +(aé§e2p) +(a56e2y)

2 2
+
_ +(a66e3p) (a7ae3y) (5)
- subject to
¢, = C 8§ +C SR + C 8 +C, 8 +C 8

1 263 & RGR RSely ely 26e2p elp RGeZy ely
+C 8 + C & - (-C, B) =0 : 6
Ysedp e3p  “Sedy ¥ L (6)

2-7
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4, = C a +C R + C dely + C Se2p + C Sely
2 sa  TeR Psely Dse2p Tse2y

0 )

+
()
or
i
e

o
+
1
o)
vl
*4

]
~
{
[p]
™
L
H

where B comes from the mean wind. The aj coefficients can be set to any value
so that varying them will represent objective functions that can minimize con-
trol deflections, hinge moments, thrust losses due to drag and engine displace-
ments. This technique cannot automatically handle the limits on the control
devices so an iteration procedure was devised to solve for 8 and then check for
excessive values. If they occurred the penalty coefficients were systematically

varied to see 1f the solution could be driven within the physical bounds,

Using the 049 data, the overriding problem near max Q (75-80) seconds is
controllability. By choosing the penalty coefficients accordiﬁg to the fol-

lowing formula a solution that minimizes control deflections can be obtained.

a, = 10/minimum (|8, | or |6, h .
] I max min

The philosophy here is that the control devices that are most severely limited
will be most heavily weighted. Unfortunately, the solution to this problem,

in the neighborhood of max Q, yielded a rudder setting approximately two times
as large as the control power can furnish (hinge moment limited). The aileron
was also at or near the limit at this time. Systematically varying the penalty
coefficients to drive these two devices within the control limits fesulted in
exceeding the control limits on all of the controllers. While this is not
formal proof that there is no solution at these points it is very strong evi-

dence for this conclusion.

Additional insight into the problem can be gained by showing that (for
the 049 data) engines 2 and 3 are not independent of each other if there is
no reason to weigh one's displacement more heavily than the other.

From the data the following holds:

2-8
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Yse2p  Lsedp
C. = C
!
SelZp n6e3p
C =C
ldeZy 26e3y
c =C

Tse2y T5e3y

[ .
(5 ) c c
& gﬁa nﬁa
8 C C
R LsR TSR -
8 C C
ely léely néely .
1
{Ce2p {~ [Q] <, “n [A] J
6e2p 6e2p T
Se2 €y C, 2
¥ Sely “Sely
8 C ' C
e3p 2SeZp n5e2p
§ Cc C
. @3y _'EGeZy nGeZyu
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) i, .C 2 m..C C |
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T ‘AT + AT -
cl ( 11 c1 12 c2) o
A] = =
[ - .
T | (A12 T, + AT )
€2 1 )

and if 944 and 966 andS'a55 = 977 (equal weights on engines 2 and 3.

Equation (4) can be written as

(s A T [Tcl ( ]
a = [Q] [c] [A] =| e, fc +C v
LTc 11 j7‘651 Nsa
2
§ Q (c a+ C y)
R | 22 253 Dep
8 : ‘ ' R..{C o+ C Y)
ely 33( R'Gely I.1'<5e].y_ )
{ Sgn ) Q C a+ C Y)
&P | { ‘“’( Lse2p se2p /|
S Q c o+ C Y
. el
ely . 55( 2se2y n_any )
¢ & (—C a - C \r)
e3p 44 £6e2p ndeZp I
8
edy | -955 (CEG o+ Cn Y)
; _ ely Sely
. J N . 4 (8)
Se2p = -8e3p = 9, ( ¢, a+c Y)
de2p N§el2p
, : Se2y = Seldy = 955 ( Ciaezy a + Cnaesz)

By a similar apprqach it can be shown that engine 1 1s not independent of
engines 2 and 3 if its penalty coefficient i1s the same as 2 and 3. The

following ratios hold: . :
: (Ze1+zcE)C05 Pey

c = cC o
Lely | Rely (2e2+zcg)005 PezcosYez. (9)
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: c cosPel _
= (10
D sely M se2y ACOSPEQCOSYEZ (10)
where Ze1 is the Z locaﬁion of engine one, Pg, is the pitch angle of engine
one and YeZ is the yaw angle of engine 2. The result is:
- _ -
ZelZCH cosPel Y e R cosP ., y
Gely = (ZE2+ZCg) COSPEZCOSYez £5é2y cosPezcosYe2 n6e2y Se2y
c + C
fel n
- Y Sely Jan

The relationship between Sely and Sely is not a direct ratio because A and ¥
are functions of Tl and T2,‘which are the disturbance torques. If the relative
value of the disturbance torques change with time, or a different kind of dis-

turbance is used, the ratio between Sely and Sely will also change.

Similarly it can be shown that the left and right ailerons operate as
mirror images of each other. Since it is difficult to imagine a case whére it
would be advantageous to operate them independently they have not been sepa-
rated in any of the work done. However, the orbiter engines have all been
operated both in pairs and independently in optimization procedure to date

and the results have verified the debelopments in the previous paragraphs.

Figure 2-3 shows the results of minimizing the control trim displacements
at selected time intervals between the flight times of 25 and 90 seconds. As
can be seen, the trim settings exceeded the hinge moment limits on the rudder
The

and, to a lesser degree, on the alleron near maximum dynamic pressure.

severity of the controllability problem is illustrated in Figure 2-4. Since
the rudder and the aileron exceed the hinge moment llmits at 75 seconds, this
time point was chosen as a test of the penalty coefficients iteration scheme.
If a control device, say Gj, exceeded its maximum absolute value then its new

penalty coefficient (aj) was reset by the following formula:

a;!, N ajl\/min[ 185

where min [

|84]

min

|1' (12)

] means the minimum of the quantity in brackets.
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Figure 2-4 is a plot of the iteration steps the computer program followed

at 75 seconds flight time. Iteration forced the rudder down near its maximum
_but also forced the engines to exceed their limits. The program failed to
find a realizable solution, indicating the magnitude of the controllability
problem at this time point (with only a mean wind digturbing function). As

previously stated, this does not prove that the trim torques are nonrealizable

but points strongly to the possibility.

To alleviate the controllability problem the solid rocket motors (SRM)
were allowed to gimbal -(TVC). Again the engines acted as a pair_as.long as
the penalty coefficients. on the engines were equal. As Figure 2-5 shows; the
solid engines relieved the controllability problem. The peak rudder deflec-
tion of 3.0 degrees was only about 13 percent of the maximum rudder deflection
(hinge moment limited) at that time. The peak solid engine deflection was

about 27 percent of the maximum (10 degrees) at 70 and 80 seconds.

The conclusions drawn from the Lagrangian approach to trim optimization
are as follows:

e Controllability is a problem on the 049 even with the aerodynamic
surfaces, if SRM TVC is not used.

e If SRB TVC is used controllability is no longer a problem.
¢ The aileron is relatively'ineffective in trimming the vehicle.

e If there are no reasons to weight them differently, engines two and
three yaw equally and pitch oppositely. The solid engines pair also
with the right engine displaced right and down and left engine right
and up.

e Trimming the side force is probably impractical.
|
In summary, the Lagrangian approach gives insight into the problem and an
exact selution‘to the quadratic cost problem. However, if the cost can not be
adequately represented by a quadratic the solution will be useless. Further-
more, the procedure does mnot guaraﬁtee‘a solution within the variable bounds

nor does it indicate if a feasible solution is possible,

PRRCEDING PAGE BRLANK NOT FILMED
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2.3 BOUNDED TRIM PROBLEMS WITH GENERAL COST FUNCTIONS |
The trim problems investigated in this study had control variable bounds

that typically limited their solutioms. In the first part of this study it

was necessary to obtain a solution and then check to see if the solution was
physically realizable, that is within the variable bounds. Furthermore if the
actual cost function was not quadratic then the Lagrangian multiplier technique

. could not be used at all.

A solution process analogous to the Lagrangian multiplier technique can be
used to solve this class of problems. However the details of the solution are
involved and the solution process does not provide insight into the problem.

A brief description of this approach is included here for clarity.

If the cost functional is differentiable, but the derivatives are non-
linear, setting the parfials of the cost with respect to the contrel variables
to zero yields a set of nonlinear homogeneocus equations which can be solved by
iteration (if the partials can be written analytically). If the partials can
only be represented by graphs or tables the mechanics of the solution are much

stickier.

Handling the inequality constraints adds more complexity to the problem.
This requires a transformation of variable and definition of n additional

variables linearly related to the original n variables.

Since one of the goals of this study was to develop solution concepts, it
was felt this brute force approach would not totally fulfill the work statement.
Therefore, the following linear programming technique utilizing simplex was

devised.

The idea behind this appfoach was that the simplex algorithm can be used
to force an iteration procedure to converge in the vicinity of the lowest cost.
During the convergence procedﬁre simplex will also require the controller
bounds to be observed. The cost functional in a simplex problem may be recog-

nized as a summation of partial derivatives.- Conceptually it is very simple
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to placé any form of partials in the simplex cost row and the simplex solution
that results will be as good as the values of the partials over which. the '
iteration ranges. If this range is held small enough the solution will approxi-

mate the minimum cost on that range.

The primary difference between a linear programming approach to the prob-
lem and the Lagrangian multipler technique is that the control limits are
considered in the solution by linear pfogramming. In other words linear pro-
gramming will produée a feasible solution in proximity to the optimal solution.
If the control limits are high enough to not impact the solution both methods

will give approximately the same answer.

As stated previously the ultimate goal of this 'study was the developﬁent
of concepts and techniques to solve the trim problem. The solution to the
general trim problem is actually an algorithm developed around the simplex
technique. . Therefore this algorithm is the primary result of the study. The
central philosophy of this algorithm is to use the siﬁplex procedure (ref. 1)
to solve the problem of minimizing a general cost function, w, over a small
range of the variables' permitted values.
l2.3.| Description of Solution Algorithm

The mathematical basis for the solution algorithm rests on linearizing
the cost function, w(éi), about a feasible solution, {Gio}. ?he cost can he

written as follows:

w(d)) = m(éi )} +
i o i

([l =1
Q7
£

—~
O

|
(e )
—
.

The problem is to find a way to minimize w(ﬁi) (which is always positive of

course). This problem is the same as making

1‘

the largest negative value possible. As will be shown later, Simplex will"
.solve the latter problem, but an iteration algorithm must be used to find the

minimum w(éi) because it is nonlinear in the general case.
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The algorithm developed to solve fhe trim problem can be described in
simple terms. The simplex algorithm itself is described in Appendix B. After
the problem is defined the variables are transformed so that they are all non-
negative, which is a requirement of simplex. Then, if the neighborhood of the
solution is known beforehand; an approximate solution is used as a starting
point. If nothing is known about the solution the entire range of the vari-
ables can be allowed in the starting solution. In either case a feasible
(meets the trim requirements and variable bounds) solution is calculated to
start the procedure. Since simplex utilizes a cost roﬁ made up of linear_costs,
this row must be filied with the partial derivatives of the cost function with
respect to the appropriate variables. The simplex procedure will solve for the
minimum cost solution based on the linearized costs and keep the solution within
the bounds of the variable limits. Of course the solution is only as good as
the linear approximations to the dost:partials. To converge on the correct
solution temporary bounds, which are always within the real bounds, are created
about the feasible solption. These bounds are set using a range percentage,
delta, about the feasible solution. After the simplex solution is calculated,
using the temporary bounds, the actual total cost, u, is cbmputed. As long as
the new total cost improves the range percentage remains the same. The problem
is set up and solved again, using the last computed solution as a starting
point about which the new bounds are set and at which the new linearized partial
costs are computed. If the total cost does not imprové delta is halved and the
new solution is calculated. When the range percentage becomes small enough the
simplex solution will be approximately the exact solution. At-some improvement
criteria the process is'terminated. A simplified flﬁw chart of the procedure

is shown in Figure 2-6.

2.3.2 ‘Formulation of Simplex Problem

The classical linear programming problem is as follows:

Find X' > 0 such that | N . (13)

n .
zZ = E a? %7 is minimem and ] (14)

2-18



TR=1246

NORTHROP SERVICES, INC.
R = 8Jpax = Jnin
.o
= x .
I T,
Kipax = xj + AR
' § o =Y
mein xj 4R

NO
YES

SOLVE

n ' )

jglcij Xj= T - L Ci3®nin

i=1,m
FOR Xj; m Xj VALUES ARE

UNIQUE (THE REMAINING -
n-m'xj VALUES WILL BE

ON THE BOUNDARIES)

{

TAKE 2= 0
X,

PUT IN SIMPLEX COST ROM

GET SIMPLEX SOLUTION

Figuré 2-6.

FLOW CHART OF SOLUTION ALGORITHM

2-19



NORTHROP SERVICES, INC. TR-1246

13 . i ’ ’
I a Wevla=1, «.i, mym<n (15)

The x7 are our control trim settings, Z is the objective function and Equation

(15) represents the zero torque requirements and the control limits.

The formal statement of the linear programming problem indicates that
only positive values of the problem variables are allowed. Furthermore, the
cost function, Z, is a linear summation of the products of the problem vari-
ables and their constant multipliers. Since any practical control trim problem
may require some negative control settings, a transformation of variables was

performed on the problem wvariables.

1f we choose Xj =8, =&,

] Jmin
then since ' S, <6, <3
Jmin - jmax
Oi'x.f_aj -8,
_ J max  Jmin
and since S, - &, >0 ' _ (16)
Jmax :Jmin :

the requirement on Xj is consistent.

In the notation of Equations (13) through (15) the problem has m con-
straints and n variables.  From experience the algorithm will solve the problem
in m to 3m steps (ref; 2). However, in the trim optimization problem simplex
has to be applied iteratively until the cost reaches a near minimum. If the
original solution was allowed to range over the‘whole boundary, the investi- '
gator s experlence showed simplex would be applied as many as 20 times. If
the solution is approximately known beforehand, the number of iterations was
reduced sharply. One wéy‘to predict the approximate solution is to use the

solution from the previous nearby time steps.

| The cost functional can be any pilecewise differentiable function. A

description of the computer program used to solve the trim problem is in

2=-20
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Appendix C. The cost functional is represented by two simple subroutines so
that if it needs to be changed in form (not just coefficients) it can be

readily reprogrammed.

For pufposes of testing the validity of this approach as well as obtaining
useful information, a éost function was defined to represent the drag losses
due to aerodynamic surface deflections and the ;hfust'losses due to vectoring
the engines off the éenterline. The drag losses are represented as typical
linear aerodynamic termé which are functions of the absolute aero surfaée
displacémenf. The thrust losses are‘calculated by subtracting the cosine of
each engines' circular displacemenf from unity and multiplying by its thrust.
Since each engine is represented in the control equations by a pitch and a yaw,
the circular displacement is the square root of the sum of the squares of the
pitch and yaw displacements. The linear programming proceaure will handle
any piecewise differentiable cost function but this cost function in Equation

{16) was chosen in thefBulk of the study

. 2 ' ' _ S 2 , 172
w =05 ¢ -Z Cy |esi| + -f Titl - cos(8] + 6i+1)] (16)
i=1 61 i=3,5,7,%9...n _
The simplex costs are defined as.
_ oW
2= 35,
1
Gi .
solution
or _
s . sinvcs? v 62 s,
7z = [qS__. C, A 4 [T .2 N
i%ref Dy |6 | i=1,2 i 2, .2 o Yi=3,5,7,9 ...
8, i! §, + ¢ g
i . , i i+l
: (17)
sin Véi_+ Gi;l
+ T - ) i=4,6,8,10, ...
i 62 + 62 i
i i-1
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The rudder drag coefficient was set to 0.7 x 10_3 nt/deg, a value that was
estimated from looking at Shuttle rudder data for a similar configuration.
For conveniénce, g¢ince there was no aileron drag data available, the aileron

drag coefficient was set to that value also.

2.3.3 Minimum Thrust/Drog Losses Withoug SRM TYC

Figure 2-7 shows the minimum thrust, minimum drag results for 50 to 90
seconds for the 049 configufationb The disturbance is the same as that used
before, the mean wind. This plot.shows the trim results when the solid engines
are not used. The "infeasible" region is the time between 74 and 85 seconds.
During that period trim requirements cannot bé fulfilled with only the orbiter

engines and aerodynamic surfaces.

At around 67 seconds the aileron began to deflect. It has not been
visible up to that time because its cost was high relative to its coﬁtrol
effectiveness. It was visible from that time on because it was mnecessary to
use it to meet the trim constraints, regardless of cost. The limitations on
the trim power were caused primarily by the rﬁdder hinge moment limits, which
. are shown on the graph. It can be seen that the rudder reached its hinge
moment bound about three seconds before the control limits were exceeded. At
that time the other controls began to increase rapidly tdward their bounds as
the rudder was squeezed by its hinge moment limit. The aileron reached its
hinge moment limit about one second before the infeasible region began. The
yaw deflection of engine one increased toward its bound and probably reached
it in the infeasible region. On the other side of the infeasible region (85
seconds) something similar occurred. The aileron followed its negative hinge
moment bound for alsecond and then dipped rapidly to zero. The rudder rémained
exactly on the positive hinge moment limit while engine one yaw deflectioﬁ

decreased.

In the region between 60 and 70 seconds Mach 1 occurs, causing sharp vari-
ations in the aerodynamic-coefficients. In that time span the rudder decreased
while the yaw displacement of engines two and three increased. This appears

to be the only consequenéé of Mach 1 on the control settings.
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2.3.4 Control Variable Proximity Penalty Functions
To show the feasibility of using penalty fuhctions to.prevent placing

the control devices on their limits, a penalty function was devised as shown

below:
- oq . s+ ¥ T 1.- (62 + 8 )]
© 7 Bres izl CDa. % 1=3,5,7,9,...n i[ A T
+ g 261 - Simax B 6imin (18)
g2 \ g — 65 26y =8 )
max min

The last term in the cost function represents a penalty for approaching the
variable bounds. This was modified in the "COST" and "SCOST" subroutines
(Appendix B) and the solution was obtained for the nmo SRM TVC case at 71
seconds. The table below-compares these results with the pure thrust/drag

minimum results from Figure 2-7.

- | e)

7 ' Sa SR del je3lp Se2y | Loss
Thrust/Drag Minimum | -6.9 | 7.5 | 3.14 | 2.1 { .66 | 74000 | de2p = —Selp
Proximity Penalty -6.2 | 6.7 4.75 2.1 .86 | 74500 Se3y = dely

+ ! .
means on boundary (hinge moment limited)

The penalty function forces the rudder off its limit, butrconsequently it in-
creases displacement of the engineé (Sely and Se2y). It is clear that the
altered penalty function should cause more thrust/drag loss and the table shows
that it does. Or course a proximity penalty function deoes not increase the
vehicle's trim power, buf'it does keep the control devices off their boﬁnds

‘until the boundary value(s) is absolutely required for trim.

2.3.5 Minimum Thrust/Drag Losses With Added Control Power

Figure 2-8 represents the results of minimizing the thrust and drag losses
{subject to thé mean wind) with SRM TVC in the control loop. As can be seen,
the aileron did not deflect at all and the rudder only deflected between 60 and
70 seconds. This seems to contradict the results on the previous graph since

on that plot the rudder dipped at Mach 1 and the engines increased. However,
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the costs of the rudder and engines are dissimilar functions. In fact, the
derivatives of the engine costs are functions of the engine settings so that in
one region the partial with respect to rudder may be larger than the engine
partials, and in another region the partials with respect to engines may pre-
dominate. The solid engines are utilized at around 1-2 degrees deflection, a
region in which their thrust loss is very small. So simplex selected the rudder

to use in place of increasing the solid engines and causing a larger thrust loss.

Figure 2-9 shows the time history of the vehicle with beefed up hydrau-
lics. {The aileron and rudder hinge moment limits removed) as can be seen,
the rudder peaked at 12.8 degrees, at 80 seconds. At that fime the hinge
moment limit is actually 5.23 degrees. By allowing the rudder to reach the
values shown on the graph, the aileron was not required to exceed its nominal
hinge moment‘limit. Therefore, the aileron's|hydraulic power would not require
beefing up if the rudder's hydraulic power were unlimited. The character of the
curve up to 90 seconds is the same as Figure.2—7, since the hinge moment limits

do not impact the solution up to that point.

Figure 2-10 is a plot of the thrust-drag losses versus time for the con-
figuration with and without TVC and with beefed up éero surface hydraulics to
give unlimited hinge moments on the aileron and rudder (stop limits remain
unchanged) .. The thrust-drag losses were lowest with TVC and highest with.the
current aero surface hydraulics and no TVC. Of course this plot does not
reflect the weight increase required to hjdraulically control the solid engines.
Nor does the chart show the weight cost of beefing up the aero surface hydrau-
lics. As might be expected, the losses were highest when the control powér
approached its limits, on the no TVC case. It is easy to see that when the
control éettings are dictated almost entirely by the trim requirements, little
can be done to minimize the cost function. Specifically, the high costs
occurred because the rudder reached its hinge moment limit and the orbiter
engines (primarily ﬁelY) were forced to take up the time slack. As long as
the orbiter engines were not required to vector more than two or three degrees
their thrust loss was very small (see Equation (16)). When they were forced

outside this range their thrust loss became significant. Furthermore the
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aileron was forced into the trim solution to counteract roll torques and the

aero surface drag loss was also increased.

2.3.6 Use of Control Daevices to Eliminate Sidé Force

It was further desired to assess the ébility 6f the control devices to
function as force canceling devices. The usual philosophy behind control
selection and placement is moment cancellation. Almest all of the report up
to this point has dealt_with mulling tbrque disturbances while minimizing'a
cost function (usually thrust/drag loss). This section imposes the. requirement
of zeroing side force as well as torques. Adding this requirement will theo-
retically cause the vehicle to fly the exact preprogrammed trajectory regard-

less of the disturbance.

It was stated in subsection 2.2 that zeroing side force was probably
impractical. However, it is impossible to tell the exact control limitationms
using Lagrangian multiplier techhiques. Since the Simplex algorithm will give
a solution if one is feasible, this problem was solved again using the new

technique.

Figure 2-11 shows the results of this study, using the mean crosswind
for the diéturbance. As can be seen, the controls met the trim requirements
until around 65-70 seconds; at that time the control devices exceeded thelr
limits. The limiting devices are primérily the rudder and the solid engines.
When § and §

24R e5L

6e5L to rapidly increase also. At some time between 65 and 70 seconds the

full control trim capacity was reached. At about that time the rudder also

approached their 10-degree maximums they éaused GeAL and

-reached its hinge moment iimit. The limitations on one of these variables
cause the trim capacity to be exceeded. The aileron and the orbiter engines
do not limit the solution to the extent the rudder and solid engines do. The
orbiter engines ‘appear to be well within their hard limits up to the time the:
rudder and solid engines reach their boundaries. The aileron is increasing
quickly but it appears to be well within its hinge moment limit at‘66—68

seconds.

It is interesting to note that the rudder deflection is negative for this

case. The rudder deflection was positive when only roll and yaw torques were
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being cancelled. This happens because the side force requirement dominates

the solution. The biggesf need is for a negative side force, caused by the
wind, and the rudder furnishes part of that. On the other hand, the aileron is
positive instead of megative which it was in the previous cases. Apparently
the aileron, which has no effect on side force, is being used to cancel some

of the torques created by the deflections of the other devices and by the wind

torques.

Judging from the control trim limitations alone, it is evident that using
the control power to cancel side force is impractical. Other information
obtained from the study shows that this requirement is impractical from the
standpoint of thrust and drag losses as well. Figure 2-12 shows the losses
incurred by trimming the side force are very large compared to those incurred
from trimming the roll/yaw torques only {Figure 2-10). Note that the curve
seems to be increasing asymptotically as it nears the infeasible region. This
is caused by the lack of surplus control authority which limits the flexibility
of the minimization scheme. As it nears the limits of feasibility this curve

~has the same appearance as the curve on Figure 2-10 which represents no TVC.
The two curves behave similarly for the same reason. When the trim require-
ments are very stringent,rthe minimization progfam has no room to adjust the

controls for minimum loss.

If the aerodynamic hinge moment were increased it would be possible to
_trim the vehicle's side force. Although only one time point was examined (75
seconds) it was found that the solution at that point required about 17 degrees
of negative rudder and five degrees of SRM displacement. The orbiter engines
‘and the aileron were negiigibly displaced compared to‘the rudder and solids.
Experience gained from the study indicates that all other time points will
trim if 75 seconds has a significant trim capability margin. Nevertheless, the
thrust-drag loss was around 200,000 newtons, which would seem to be unacceptably

high.

2.4  DYNAMIC SURVEY ‘
In the study to this point the disturbance has been the mean crosswind.

In order to assess the interaCtion of the dynamics with the control system
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command ‘distribution a quick-look dynamic response was generated for the

NAR configufation. This configuration was chosen because the simulation of

it was readily available. -The data for this configuration are presented in
Appendix D. Also in this appendix is a block diagram of the dynamics model and
NAR control scheme. The disturbance was a synthetic crosswind with a gust of

7.5 m/sec superimposed on a 75 m/sec wind. .

The results of the NAR simulétion are shown in Figufe 2-13. The commanded
control settings are the same as the actual control settings if actuator
dynamics aré'neglécted. As can be seen from Appendix D, the rudder, Sel and

§ ap3p 2T used solely to cohtrol roll, Yaw is controlled by 6323L and the
solids (GeLA and'ﬁeLS) are controlled by feedback from both yaw and roll. The
torque outputs from thésé control settings were split into roll and yaw to

generate a time history of roll/yaw torque commands.

These torque commands were input to the simplex program.to generate axset
of minimized trim solutions. ~The results of the minimum thrust-drag solution
process are shown in Figure 2-14. The rudder is more abtive than the NAR
control scheme allows (ne hinge moment limit was known or used). The top
brbiter eﬁgine (5e1) reéeives a larger displacement and.1is yawed complefely
to its limit by five seconds. The solid engines and 5523D are slightly less
active than the NAR control gcheme calls for. There appears to . be no signif-

icant differences in the deflection of Ge23

L

The most striking result of this graph is the similarity in results -
between the NAR control system and the Simplex method of torque command dis-
tribution. It is probable that NAR performed some similar sort of optimization

to determine their signal-splitting system.

Figure 2-15 shows the thrust-drag losses for the two control schemes.
The simplex scheme yields about 10 percent less thrust-drag loss. However,
this Ls offset by the-fact'that the simplex scheme places the top orbiter

engine on its limit at the time of peak disturbance.

2-33
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The penalty coefficient on orbiter engine one could be adjusted to move
it off its limit. Alternatively the cost functional could be modified to
penalize proximity to the control limits. = This type of penalty function was

discussed earlier in the report.

2.5 FURTHER APPLICATIONS )
There are several possible additional uses for this algorithm. On the
current NAR configuration there are still payload and load problems during
ascent. These problems may require changing the control system to resolve
them. The solution algorithm should give an indication of the way to proceed
in changing gains and signal splitting. If soft limits are desired, the A
algorithm could be used to generate position dependent control gains to achieve
the same purpose. Ultimately it may be possible to implement the system on-
board. The problem that must be solved here is computer time. It requires
three to nine matrix row or column operatioms to get from one flight ététe
to the next if the time change is small enough. This system would automatically
solve an engine malfunction problem, minimizing the deterioration in mission

capability.

The algorithm has several uses applicable to new configurations. If a
configuration does not have the confrdl_system defined, a typical torque com-—
mand profile, such as the mean wind, may be used with the algorithm to compute
the settings of the control devices. This will give a preliminary control
agsessment to détermine if éontrollability problems exist and how to proceed
with signal splitting. If they are not already set, the algorithm can be used
to set engine cant angles at their most efficient values. Use of the algorithm

on problems such as these will add to the background and feel of the designer.
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Section 11l
C_ONCLUSIONS

Lagrangian multiplier techniques may be used to solve quadratic cost
functions only. They also provide a method for blending the commands
to the control devices. However, the trim problems must be unbounded
for a solution to always be available.

e The Simplex based algorithm works for general problems. The . cost
function may be of any form as long as it is piecewise differentiable.
The algorithm considers the variables' bounds explicitly in the
solution. . '

e The algorithm is most effective where there is adequate surplus trim
power to give flexibility to the solution.

e The algorithm can be used to solve problems such as "optimally"
trimming the shuttle ascent vehicle or the orbiter in reentry.
("Optimal" trim means approximately the optimal trim solution with
respect to a particular cost function.) It is also useful in obtaining
a feel for the trim range and an insight into the basis of signal
splitting schemes on the conventional Shuttle ascent control systems.
The algorithm may be used in flight if sufficient digital computer
speed is available. On-board it would solve the engine malfunction
problem automatically.

e The 049 ascent vehicle has controllability problems if the solid engines
are not vectorable., If the solid engines are used the controllability
problem vanishes. Without SRM TVC simplex shows that there is no
feasible roll, yaw trim solution between 74 and 85 seconds of flight.
With beefed up rudder hydraulies there is a solution.

e The dynamic survey performed on the NAR configuration showed the
simplex control scheme to be close to the results obtained from the
NAR control scheme. The simplex scheme saved about 10 percent of the
thrust-drag losses compared with the NAR control scheme.

3-1
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ENGINE FORCES AND MOMENTS

6.68 m § Positive

. 2 €p
cg - Ir]-———i-

Centerline
of HO Tank . ) Positive
ey
A
Engine 1
F cos 18° & o force in Y
ey
1
(9.34 + Z )F cos 18° § roll
cg’ " ey
~X F cos 18° § yaw
cg ey,

where X , 2 > lengths
cg cg

Engine 2.

F{cos 12° cos 3.5° § + gin 12° sin 3.5° § + cos 12° sin 3.5°}
eyz ‘ EPZ' .

(6.68 + Z ){Y force} - 1.345F{sin 12° - cos 12° & _ }
cg EP2

_ r D- . o a [+]
Xcg F {sin 12° sin 3.5 GEPZ + cos 12° cos 3.5 ézey}{yaw}
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Engine 3.

[+] L]
F{cos 12° cos 3.5 6ey3

(6.68 + Z ) (Y Force) + 1.346F{sin 12° - cos 12° § '} roll
cg ep3

- X F {-sin 12° sin 3.5° § + cos 12° cos 3.5° § }  yaw
cg ep3 ey3
A ventral fin was added to the configuration to improve the aerodynamic prop-
erties in the region of max q. It significantly reduces the yaw and roll
moments due to side slip. This effect is accounted for by direct addition

of ACN ’ ACy and ACL to their respective terms in the equatiomns,
P B B :

- sin 12° sin 3.5° 6ep3 - cos 12° sin 3.5°} (Y force)
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DATA
2 i
FLIGHT | NEWT 766 XCG NEWT/m Aref bref NEWT
TIME THRUST/ o o DYNAMIC "3 A THRUST/SOL
SEC ENGINE PRESSURE : -
6 § | 2 2] 7

26 | 1.65 x 105 | -1.58 | 23.35 | .482 x 10" | 3.177 x 107 | 2.832 x 107 } 1.28 x 10

a0 |1.76 x 108 | -1.5847 | 23.82 | .987 x 10* 112 x 10’

50 | 1.825 x 10%} -1.5914 | 23.47 | .134 x 10° 1.137

60 | 1.885 x 10°| -1.5053 | 23.52 | .174 x 10° | 1.157

65 | 1.92 x 105 | -1.5979 | 23.545 | .194 x 10° . | 1.166

70 11.9ax108 | -1.60 |23.57 | .212x 10° I 175

75 | 1.97 x 168 | -1.0626 | 2613 | .226 x 10° 1.183

g0 | 1.08 x 108 [-1.455 | 2218 | 223 x10° | 1.192

o0 | 2.025 x 10°] -1.480 | 24.33 | .217 x 10° 1.205
100 | 2.08 x 105 | -1.4327. | 24.535 | .165 x 10° 1.213
110 | 2.06 x 105 ] -1.4255 | 24.74 | .17 x 10° * | * 1.216

. 6 . 4 .
s | 2.07 x10% | -1.400 | 25.62 | .231 x 10 | 1.0
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DATA
400 FT> - FIN DATA IS PER/DEG

FLIGHT AFT FORWARD

TIME ACmB AC]B_ ACmg ACys
25 .0064 .0031 -,004 -.0N
40 .0067 .0032 -.0044 -.012
50 .0074 .0033 -.0048 ~-.013
60 .0085 .0036 -.0056 -.015
65 .0094 .0038 -.006 -.016
70 .014 .0042. -.006 -.017
75 .01 .0042 -.0058 - -.0165
80 .0088 .0035 -.005 -.014
90 .0075 .0027 -.0044 -.0105
100 .005 .0017 -.0028 -.008
110 .004 .0014 -.0022 -.006 -
145 .0028 .007 -.0015 -.004




DATA -
TOTAL | : GRAVITY WIND
L | e e | DR | e | ol | 8D
1.2° 25 954 x 102 | .954 x 10° 279 -.012 1.0 9.8 .28 2.0 | .0007
3.4° 40 950 x 103 | .149 x 10° | 165 x 107 | .0s0 | .999 9.8 44 9.0
5 (4.6) | 50 190 x 103 | .1ee x 10% | .30 x 102 | 25 .992 9.79 .56 15.0
7 (5.9) 60 241 x 108 | 232 x 10° | .658 x 102 | .222 975 9.78 707 | 28.0
1 (6.5) 65 272 x10° | 257 x10% | a5 x 102 | Lom 962 8 29.0
4 (6.9) 70 205 x 103 | 283 x 103 | s x 108 | .329 .944 .9 34.0
6.7 75 343 x 10° | .310 x 103 | 148 x 10 | 388 .923 9.77 1.01 40.0
6.5 80 385 x 103 | 337 x 103 | 87 x 108 | 449 893 1.13 44,0
3.53 a0 | .a86 x 105 | .392 x 103 | .288 x 10 | .66 | -.824 9.76 1.43 30.0 .007
0 100 612'x 103 | .a85 x 103 | .420 x 10° | 664 .748 9.74 1.8 0
10 768 x 103 | .498 x 103 | .584 x 10° | .68 732 9.73
140 as2 x 10 | 673 x 100 | aze w10t | a7 486 9.68

"INl ‘$3D1AYIS JOUHLIUON

9%CT-d1
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DATA

F_lﬁgigT 5y | CySr CnS,r‘ “g “me C.VB %%
25 | .23 504 ~510 | -.283 | .302 | -1.66 | -.203 x 10’
20 | .265 408 -.489 | -.285 | 315 | -1.68 |-.612 x 107
50 | .259 462 473 | -.286 | .325 | -1.70 | .450 x 107
60 | .215 394 -.388 | -.201 | 404 | 183 | .z x 107
65 | .18 319 -.310 | -.208 | .468 | -1.99 |-.158 x 107
0 | .73 .300 -.305 | -.326 | .460 | -2.05 | .687 x 107
75 | .206 202 | -.300 | -.388 | 348 | o197 | -.103
g0 | .186 217 256 | -.356 | .266 | -1.92 | .#12x 107"
90 | .105 132 37 | -.200 | 238 | -1.93 |-.277 x 1072
100 | .0s5 |.91 x 107" | -.105 | -.26 | .269 | -2.03 | .301 x 107
1m0 | .o406 | .749 x 107 | -.077 | -.196 | .207 | -1.98 |-.851 x 1072
145 | .0286 | .573 x 107" | -.061 | -.122 | -.028¢ | -1.60 |-.100 x 1072
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DATA
FLIGHT | ¢ c © MASS Ix 12
TIME MSa 1Sa Kg Kg - m:2 Kg - m2
25 0458 | -.0430 | .218 x 107 | .e53 x10® | .501 x 10°
40 0484 | -.0858 | .201 x 107 | .es6 x 108 | .547 x 10°
50 043 0887 | 190 x107 | 798 x 108 | .s19 x 10°
60 0358 | -.0548 | 79 x 10" | 733 x10® | 491 x10°
65 0344 | -.0630 | .17a x107 | .702x10% | .478 x 10°
70 0301 | -.0630 | .169 x 107 | .671 x 10® | .464 x 10°
75 0258 | -.0544 | .160 x 107 | .629 x 108 | .420 x 10°
80 0244 | -.0a58 | .154 x 107 | .606 x 105 | .405 x 10°
90 o7z | -.0286 | 148 x 107 | 559 x 108 | .375 x 10°
700 | 00086 | -.0215 | 133 x 107 | m12 % 108 | .36 x 107
10 | -.00286 | -.o158 | .22 x 107 | .46 x 108 | .317 x 10
145 | -.0114 | -.00859 | .914 x 10° | .329 x 10® | .228 x 10°
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DATA -
<:::%a (INCLUDED ANGLE)
s e St
DEGREES DEGREES
25 No Hinge Moment Limit (30} No Aileron Limit
40 | 42 (30) 71.8
50 | | 30.8 (30) 52.6
60 . 23.5 - 40.0
65 14.7 . - 25.1
70 g1 14.1
75 | o 5,54 - 947
80 523 | 8.91
90 - | 6.27 10.69
100 10.23 : 17.5
110 19.67 | 33.64
140 No Hinge Limit No Hinge Limit
Hérd Limits E Hard Limits
(+30°) (40° up - 15° down)

The hinge moment 1imits are a function of dynamic pressure and as such
would change with trajectory variation. However, this data .assumes a nominal
ascent. 1In addition, I have included the hard deflection 1imits which govern
when the hinge moments do not. I do not have any data for it yet, but there
should be a yaw introduced by unegual aileron deflection.
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The simplex algorithm is a well known algorithm for solving linear,

bounded problems with linear cost functionals. It is uniquely suited to the

trim optimization problem since simplex solves the problem of more variables

than constraints and also handles explicit inequality constraints. The orig-

inal simplex algorithm is as follows:

1.

o .
Examine the a,, j=1, ..., n-m.

3 :
a. If all a? > 0, the solution is optimal.

b. If some aE‘SHO, choose j = s by a: = min a? < 0.

- 1
Examine the a_s i=1, ..., m.

a. 1If all a: < 0, the value of Z is unbounded in the class of
solutions given by (7). ' :

b. If some a: 5_0, choose i1 =1r by

by
a
S

e

min ai >0
s

NlU‘

>0 (bT>0)

w H

Using af for a plvot, perform one elimination to obtain the new
canonical form. The elimination is applied to the right hand side

to give the new values of the new basic variables and an extra E.R.T.
applied to row zero to give the new relative cost factors. The new
value of Z (with sign changed) appears in row zero of the right side.

Return to 1.
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It can be shown (ref. 2) that if a feasible solution exists, we can obtain
a basic feasible solution. Applying the simplex algorithm to this solution,
assumlng Z is bounded below, we either prove the solutlon optimal or obtain an
improved basic feasible solution, provided all b > 0 for a > 0. Thus we can
never return to a previous solution since each one has a lower value of Z than
thé preceding one. But there are only a finite number of basic scolutions (not
exceeding the number of combinations on n things taken m at a time) so that we
must eventually arrive at some best basic feasible solution. But this must be
an optimal solution or we could repeat the algorithm. Hence there exists a
basic feasible solution which is optimal. .This proves that if any feasible
solution exists and Z has a finite minimum then there exists a basic optimal
solution. Furthermore it shows that the algorithm is a finite iterative pro-
cedure, i.e., we arrive at a solution in a fipltg number of steps. This is

also clearly true if Z is unbounded below.

Finding A Basic Feasible Solution - The number of linearly independent

rows of a restraint matrix is called the rank of the system. If the rank p is
less than m, then either there are m-p redundant equations or else the:e'is no
solution at all, feasible or otherwise. TIf the rank is m, then there is some
basic solﬁtion but there may be no feasible solution. Hence, given a problem

there is, in general, no way of knowing whether any solution exists.

To overcome these difficulties, a very simple device exists which either
finds a feasible solution or determines that none exists. It also induces
rank m in case p < m. The idea is to embed the given problem in a larger
system and solve a prelimlnary LP problem before attempting to- minimize Z,
This process is called Phase I of the simplex method the optimization of Z

being referred to as Phase 1I.

We suppose that all bt > 0. (If not, the entire equation for bt < 0 can

be multiplied by =-1.)

We now define m artificial variables

B L PO S L

B-2
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and xn+m+l which will eventually be restricted to be non-negative. The co-
efficients of these variables will be new vectors arbitrarily adjoined to the
restraint matrix. The coefficient of xn+i will be unity in row i and in an
added row w, zero elsewhere. Letting m + 1 = w the variable.xn+w will have a

coefficient only in row w. The system of restraints is now

w .

I S (B-1)
i=1 | |

L | +1 i '

L Srtopta=1, ., m (B-2)
3=1

+ . s .
Since the x 1 are artificial, they must mot appear in the final basic solu- .

tion, except perhaps at zero level. If xn+w

> 0, then (B-1) guarantees that
they are all zero since a sum of non-negative numbers equal to zero implies

each is zero.

[

If the xn+l = 0, then clearly (B-2) is the same as the original restraints.
Mote that the rank of the system (B-1), (B-2) is mt+l. This is clearly seen by

displaying the entire expanded tableau:

1 2 n n+l nt2 ntm  ntw
x X" . . . X X X e s+ 2 X X
- —_ _ .
o o o
a; ay » o a 0 0 «c .0 A
1 1 1 1
al a2 e e an 1 . . . 0 b
m m m
a, 32 « v a an 0 0 R b
LO"U...O 1 1 R | 1 0 (B-1)
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Although {B-3) is not quite in canonical form, there is an obvious starting

solution if we allow Xn+w to be negative, namely:

xJ =0, =1, ..., n
n+w - _ ? bi
i=1
et i1, ..., m | (B-4)

The solution (albeit infeasible) will remain valid of we apply the following
E.R.T: '

W W 1 G 1

j =1, ..., mm), b” = b" - b

i.e., if we subtract Equation 1 from Equation w. We can then subtract equa-

tions 2, 3, ..., m in turn from Equations w. If W&'redéfine a; and b” as
w a i
a, = z a, (i=1, ..., ntm)
J i=1 ]
m
bW - E bi
i=1
the result is the following tableau:
1 2 o nt+l a2 -+
x X .. . X x X v+ X
— O o o - - =
a; a, . - a 0 0 . .0 Z
1 i 1 1
aj ay « - a_ 1 0 e a0 b
2 2 2 2
a; a, .« . . a; 0] 1 . .0 b
W W w W
a a, . . . A 0 0 . e . 1 b
1 2 n ] L ~ (B-5)

B-4
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which is in canonical form except that b" < 0, and hence xn+W < 0. The first
objective will therefore be to maximize xn+w' Zero is clearly an upper bound
for xn+W by (13}. On the other hand, any feasible solution to the original

n+i -

problem would leave all x 0.. Therefore if max xn+w < 0, there is no

solution to the given problem.

From Equation w in (B-5), it is clear that maximizing xn+w is the same as

n . : .
minimizing F = Z a? xJ since their sum is a constant,
j=1

ntw w

W . :
Hence we simply use the aj for relative cost factors in Phase I, carrying along

a? to be ready for Phase II if and when xn+w = 0.

P +w .
During Phase I, maximizing xn y its column of coefficients must never be

a candidate for elimination.

It is not possible to eliminate all the artificial variables from any
basic solution even in Phase II. For even if the m original restraint rows
a% (i=1, ..., m;y j=1, ..., m) were linearly independent, row w is a linear
combination of them and hence them + 1 rows for 1 =1, ..., wand j =1, ..., n
are linearly dependent., Hence at least one artificial column must always remain
and we have insisted that column n + w stay in during Phase T. If, however,
the original m rows had rank p <m, thenm - p + 1 artificial columns will

remain at the end of Phase I. If xn+w = 0, the solution is a valid one; if

n+w . :
X < 0, there is no solution.

Degeneracy may also cause xn+w to reach zero before the other artificial
columns are removed from the basis. In this case, some of the a? may still be
negative. Thus Phase I should be terminated when either xn+w = 0 or when all

a? < 0, whichever happens first.

B-5
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It is possible that Xn+w will be eliminated in Phase II if some other
artificial column is still in the basis. Whenever any artificial column is

eliminated from the basis, it is simply dropped from further consideratien.

1f the original restraints contained some legitimate unit vectors, then
the corresponding artificial columns need not be added and the corresponding

rows are not subtracted from row w.
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This appendix is a listing and description of the computer program
developed to solve the problems in this study. Figure C-1 is a flowchart of

the calling sequence for program SMPLX.

DATRD is the program that reads the data and calculates the control
devices' stability derivatives. This program also reads in such things as
penalty coefficients and initial solution and starting range. The program
can be started with a zero vector for the starting solution and 100 percent

range to insure a feasible solution if one is available.

Then the program enters SIMIM which calls all the subroutines that
calculate the solution. TFor the first pass the partial costs are set
(subroutine "cost™ calculates %%0 at the initial sblu;ion, the temporary
bounds are set up about that solution and the simplex t§b1eau is set up and
solved. This gives the minimum cost sum (subroutine SCOST) on the temporary

range 1f the costs are linear enough on that range.

On subsequent passes CVARB calculates the actual variables from the
simplex transformed variables, TORQ calculates the sum af the variables
times their coefficlents and the disturbance, and SCOST calculates the
actual total cost so that actual improvement can be discerned. Then the new
cost is compared to the old cost and if there is no improvement the bounds
are squeezed by half (SQZ). If there is improvement the new partial costs
(SCOST} are calculatéd at the new solution. Then the new temporary bounds
are set. BSubroutine SETUP puts the problg@ in simplex form and SOLTN solves
it. The improvement criteria is then checked and if it is fulfilled, the

program loops again.

~ The only things that require change to solve a different problem are
COST and SCOST, and then only if the cost function changes form from Equation
{(16). SCOST represents the total cost and if ‘the form is changed, then the

cards from "TCOST = 0.0" to "RETURN" must be altered according to the actual
cost equations. Then in subroutine COST the partial derivatives of the total
cost equation, evaluated at the current solution, are calculated. To change

COST, simply remove the cards from "18 CONTINUE" to "DO 22 I = 1, NVAR".

c-1
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DATRD

CVARB
TORQ

SCOST

COST

S0z

EIMM

SETUP
SOLTN

Fiqure C-1. CALLING SEQUENCE FLOWCHART Of PROGRAM SIMPLEX

c-2
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The number of variables in the problem is represented by Fortran mnemonic
"NVAR". -The number of equality comstraints is called '"NEQ". These must be
changed if the problem size changes. The program is dimensioned for a maximum

of three equations and 12 variables.

An input description is listed below:

CARD
FORMAT(5E13.4)
1 YE1 ZE1l PAEL YAE]L
2 YE2 ZE2 PAEZ YAE2
3 YE3 ZE3 PAE3 YAE3
4 YE4 ZE4 PAE4 YAE4
5 YES ZE5 PAE5 YAES ‘
(YEL is y position relative to cg of engine 1, ZE2 is z position engine
2, PAE3 is pitch angle engine 3, YAE4 is yaw angle engine 4)
FORMAT 13 |
6 TIME (time of flight)
FORMAT (5E13.0)
7 THR, ZCG, XCG, AREF, BREF |
' (orbiter thrust per engine (nt), ZCG 9m), XCG (m), reference area (mz),
reference length (m))
8 QBAR, 6, MASS, IX, IZ
(dynamic pressure (nt/mz), gravity (m/secz) mass (kg), x axis inertia
(kg mz), z axis inertia (kg m2)).
9 THRS, DELT
(solid engine thrust per engine (nt), initial solution range, rates
of full range 0 - 1.0)
10 (DIMAX(I), DIMIN(I), I=1,NVAR)
(maxima and minima for each variable one at a time)
11 DCCB, DCNB, DCVB
(A L, acnf,3 ACYB)
12 CLB, -CLDA, CLDR
(CRB’ “g 0“1 )
a R

C-3
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CARD
13 CNB, CNDA, CNDR

14

15

16

17

18

(CnB, Cn6 s GH(S )
a R

CYB, CYDA, CYDR

c, » » Gy )
Y, CYG Y,
a R

(TC(I), I=1,NEQ)

(disturbance torques and forces aside from wind)
BETA

(wind veleocity divided by wvehicle total wvelocity)
(PC(I)), I=1,NVAR)

(penalty coefficients)

(A(I,KKK), I=1,NVAR)

(initial solution vector (temporary location))



CAGE 001

// BSHARD X348 025D

/7 FOR
*OME

VORD INMTEGERS

#INCS(11320RINTERSCARD)

C

PROGRAM DATRD(C3C o liRs NI g NED»CHY . 2 DEL T aMPASS)

INTEGER TIMF
REAL MASS.IXael12

COMMON A(L1T7o28) o W{1T7) el {170l TTad)allslw .
COMMON DIMAXL{L1Z)eDIMINGCLZ) 2PCL12) »D3112)

COMMON EIMAX(12) sEIMINILZ9CU3413)9TCIB) W DELTSTCNSTSCOSTLHCO

DATA NP/2/ oMW/ 3/ W NEQ/B/sCNV/E5T742957T795/ 2 NVAR/LZ/

a2

COST1=100n0N0,
COST2=1000000,

MVARL =NVAR+1
410y =50

READ (NRs200) YE1sZE1sPAE1sYAEL
READ (NRW200) YEZ JE2sPAEZ 4 YAED

READ (NR'?UO} YEA4ZE3sPAE3 9 YAES
READ (MR$2Z200) YEL4ZEL4sPATGIYAES

READ (NR7P00) YESSZESsPAESYAES
READ(NR,1INN) TIME

READ (MR9201) THRs2CGeXCGsAREF yBREF
READ (NR»201) QBARSGIMASSsIXeIZ

READ(NRPs20n1) THRSWDELT :
READ(NR203) (DIMAX(TI)SDIMINII) oI=1stVAR])

READ (NRy201) OCLB#DCNBDCYB
READ(NR.201) CLBCIDALCLDR

READ(NRs201) CNR+CNDA+CNDR
READING201) CYBWCYDASCYDR

READ(MR201) (TCUI)eI=1sNEQ)
READ(NRS201) RETA

FZCG = [ZCG+1447)/BREF
FXCh = (XCC=Pl.,R)/BRFF

nSs RRAR®AREF
GSh QS#BREF

COMPUTES INDIVIDUAL ENGINE DERIVATIVES

ENGINFES 142 AND 3 ARE LIQUIDS (CRBITER)
ENGINES 4 AND 5 ARE SOLIDS (SRM)

ANATANAN NS

ENGINE 1 PITCH DOES NOT CONTRIBUTE TO LATERAL FORCES ARD

MOMENTS

PAFL/CNV
COS(TEMP)

TEMP
CPE]

"

TEMP
CPE2

PAF2/CNV
CNSI(TEMP)

i

SPER
TEMP

SIMITEMP)
DAEB/CNY

CPE3
SPE3

COSITEMP)
SIN(TEMP)

YAF 2 /CNY ‘ o
CNS{TEMP)

TEMP
CYE?

SYE2
TEMP

SIN(TEMP)
YASE3/CNY

"

COS{TEMP)
SIN(TEMP)

CYE3
SYES -

TEMP YAEL SNV

COS(TEMP )

Bl

CYES&
: C-5
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TEMP = YAFS/CNY

CYFS = COSI(TFMP)

CMELD = =1,0%XCGH#THR*COEL/QSR

CLELY = (ZF1+ZCG)#THR#CPEL/QSR

CNE1Y = =1,0%XCO*THR®*CPEL/QSE

CLE2P = —~(YEP*CPE2 + (ZCG+ZE2)#SPE2#SYE2)*THR/QSH
CNF2D = =1,0#XCG*THR*SYE2*SPE2/QSH

CME2P = =~1,0#XCO*THR¥CPE2#CYE2/QSE

CLE2Y = (ZE2+ZCGI#THR*CPEZ*CYER/QSB

CNE2Y = =1e0%XCG#THR#CPE2*CYE2/0SB

CME3P = =1,0%XCG*THR*CPE3*CYE3/QS8

CLE3P = ={YE3#CPE3 + (2CG+ZE3)#SPE3XSYE3)*#THR/QSE
CNE3D = =],0#XCG*THR¥SYE3I*SPEI/QSB

CLE3Y = (7E34ZCGI*THR*#CPE3*CYE3/GSB

CNE3Y = =140%XCO¥THR¥CPEI*CYEI/QSB

CLE4R = Oo707%THRS* (=YE4~ (ZE4 +2CGI#CYE4) /QSH
CLE4L = 0,707*THRS*(=YEL+ (ZE4 +ZCGI#CYEL) /QSH
CME4R = =0e707#XCG*THRS*#CYEA/QSB

CLESR = 04707%THRS*(=YES=(2E5 +ZCGI*CYES)/QSH
CLEBL = De707#THRS#{=YES+(ZE5 +2CG)*CYES) /0S8
CME&4L = CAF4R

CNE4R = 0o TOT#XCG*CYE4*THRS/QSB

CNE4l ==04707%XCOHCYEA4#THRS /QSH .

CMEBR = =0 7TO0T*XCGHTHRS*CYES/QSB
CNESR = 0,707#XCGHCYES*THRS/QSB

CNESL ==0. 7OT*XCG*CYE5*THRS!OSR
CMESL = CMEGR

'
c COMPUTES MOMENT COEFFICIENT RELATIVE TO VOMENT REFERENCE POINT
c ' e : :
C
c { BARSE FNGIME DFRIVATIVES INTO € MATRIX
C .
- Cl1el) = CLRB + DCLO + CYR#FZCG

C{1s2) = CLDA

C{1e43) = ¢ CLDR + CYDR#F2CG

C{le&) = Qa0

ClleB) = CLELY

Cl{ls6) = CLEZP

-~ C(147) = CLEDY

Cils8) = CLEZP

C(1e9) = CLERY

Clls101= CLFE4R

Cllelll= ClF4l

C{1s12)= CLESR

C(1lsl31= CLESBL.
¢

Ct241) = CNR + DCNB = CYB*FXCG

ClPe2} = CNDA

Ci243) = CNDRP = CYDR*FXCO

C(Pe4) = 00

C(245) = CMELY

Cl246) = CNF2P

C(247) = CNE2Y

Cl248) = CNERP

C{249) = CNE3Y

C~6



DACE D03

C{2410)=CNFLR

Cli2ell)=CMTgG|
Ci{2e)7}=CHESRR

C{2413)=2CMRNL

C
ClAaal) = NaD
Cl392) = Ng0
Cl393) = NG0
Ci{3ad) = CE1D
Cl{3e5) = N0
Ci3s8) = CHEPD
T{27) = Na0
C{AeP) = 103D
C(340) = NgN
C(2s]0)=CvELD
Ci3yll)= CME4L
Cl2412)=CMERR
Cl2413)1= (CMEBL

C

DG & X = 13%FQ

TCIK) = TC(¥) = C(Xs1)*PFTA
A CONTINUE -

ZEAN(NRG201) (PCIIYsI=1MVAR)
READ(MZ4201) (ALT1425) 91210 NVAR)

WRITE{MysENNY TIMF
WEITE{(Me 003} DIMAX

WRITE (MW 202) DIMIN
WRITE(NW.GG)

WRTITE (NW 6N )
WEITE (MY 203)(C(1lsl)el= 198)

WRITE (Mg B2
DRITE (NwWe203)(C(1lal)e]=0yNVAR]]

WRITE (MY WaR02)
WRITF{ W2 03){Cl2a])s]=1s8)

WRTTHE (VW;BZB)
WRITE 2203)(C(2s])9[=9 s VAR])

I‘QIT:(“‘IQQDQ)
*?ITf(“*-“03)(C(391);Lf1’8)

HMRITE (N5 24)
WRITE (WNiwel2023) (C(347)el=0sNVART)

WRITE(NWe202) (PC{1)sl=1sNVAR)
VRITE(M g2 00) (TC{TlalelMEQ]

CALL LTINY{SIMTV)
99 FORVAT(2Xe//e56H4 LATERAL MON=DIFENSIONAL STARILITY DCERIVATIVES #1/

12AD* )
1709 FORMAT(TI)

200 FORMATIGF1I3.4)
201 FOBMAT(5F1340)

207 FORMAT (RF1343)
203 _FORMAT(RE13.3)

500 FORMAT(IHY o/810Xs8H TIME = 41345H SEC «//7/7)
503 FORMAT(// «5X%Xe5H CLB +AXs5H CLNDAL8Xs5i CLDRs3Xy

16H CLEL1Po7XoHH CLELIYsTXs6H CLE2P s TXoH CLEZY s TX e HH CLFBP}
507 TORMAT(// #5%X95H CNB 98Xe5H CHOASBXs B CHNERs3XY ~

l6H CNEIP»7XebH CNELY s 7Xs6H CHNER2P s TXeHH CHE2Y s 7X06H CHMERR)

503 FORMAT(// +5Xs5HCMALPeRXySH CMDAWRXs5H CMORS3Xs
c-7
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16H CME1D 4 7XebH CMELY s TXs6H CHMEZP s TXe6H CME2YsT7Xs6H CME3P)

522 FORMAT(//35Xe5HCLEZY +8X s 5HCLE4R$2X s SHCLEGL 98X s SHCLTHR 42X v 3HCLESL)

523 FORMAT(//45XeSHCNEAY s 8Xe5HONE4R 98X e SHCNE 4L +8X e SHCNESR 93X ¢ SHCNEDL )
524 FCRMAT(//95X9BHCMEBY s8X s SHCMELR 38X s 5HMIMEAL 98X s 5HCW 5 98X ¢ SHCYMESL )
END !




PACE 1] 3R65

/7 JoB T ' 3865

LOG DRIVE CA2T 5REC CART AVAIL PHY DRIVE

nnoe nnre 0noz © 0000

P ov10 0 ACTUAL Pk CONFIG 8K

/7 HSHARD X358 0260

/f FOR
#]0CS{1132PRINTERSCARD)

#ONE WORD INTEGERS
#ARITHMETIC TRACE

#LIST SOURCE PROGRAM
DROGRAY SIMTM

LINEAR PRNOGPAMMINMG FOR 1130 ==DATA LOADER BHAST
G (Rei13) COEFFJCIENT MATRIA

8

TC {3} MODIENT COMITAWHDS :
BC (12} PENALTY COEFFICIENTS

YYD

non|n

NIZENSTON D(12)
C“UVOR AU17926) oW {1739l (1 T7)elllsls s]IslW

AON 0 DIMAX(12)eDTMIMIL2) WPC(12) 400120

CCWVOM FI”AXII?}9EIMIN{12)QC(an-“!;TC!B);DELT 2 TCOSTHCOST1eL

DATA \w/B/.NVAD/IZI
DATA CNV/57,29578/

NYAR]=O#MVAR 41
T = AV

C coMpyTEs vALUES OF CONTROL VARIAHLE

JF(LIlO)=B0) TDe71470
27 COMT TANIE

CALL COsTH DD D IMAX «DIMINsAWPC)
MO 52 t=1 ¢NYVAR

D{I)=A(TsNVARL)
Dofly=n(T}

¢

52 CONTINUE
TCOST = 1000000000800C

CAST1 =170NnNNNRAad0Nn00.

~o To 72

70 CONTINUE
ne b ) .
caLL CUARR (L sNVAR «AsDsEIMINSEIMAXPNVARL)
CALL TORQINVARSC oD TCHRCLLTpYAWT »PITT)

ALl %\HST(COSTZ COSTlpTCOSTaD PC» CNV.DIMAX;DIVI
72 CONT INLIE

LE(COST1=TCOST)B5 385486

a5 CONTINUE
WRITE (Nws202) TCOST

MNE] A
TEOST = CNSTI

CALL SPZ TDELTSTCO5TCO5T1)
noTH eRr

p6 COMT INUE : S J

0O 87 I=1sNVAR ~ |
CHIBSERIDE: ' '

c-9



DAGE 2 3068 R

27 COMTINUE . - e

CALL . COSTL DDsNIMAXSDIMINsASRC) | )
2P CONTINUE - o e
c
C CHvBYTES EIVMAXSELY1N  FOR _NFEXT PASS

CALL EINYMIEIMAX s EIM TN o NVARSDNGDELT o] "AXy 1]

[F {n) 60e60961 i
57 CONT IRUF .
HRITE (N 95 k)

\—‘FRITE('\‘;!‘J‘J’?Q?_) Dr‘

WRITE (MW 92 02) POLL T YAWT 9 PITT s TCOST o COSTLCST o0 T
61 CONTINOE ‘

cALL SETUP(FIMA;‘(!FIf‘-"I“\i’NVAE?QCQT‘:gﬁo".'.'iLc'\:'\f-“«!—':l!’\'Z'\II!JJ’IIIJ e
CALL SOLTN [MVARL #MVARSD)
I1F (DELT=re00N5) 7Ns70s73 : S
73 CALL EXIT - ' .
202 FORVAT(RAE1IA,5) : _—

506 FORMAT(1H 99X 21HCONTRCL TRIM SETTINGS/ 19X e62HATLF N RUCLGER oE %G 1
LYAWGEMAS D73 PITCH/YAWSENGS 4/5 RIGHT/LFEFT)

EMN :

FTATURES SUPONRTED
ARITHMETIC TRACE

ONE WORD INTEGFRS
17CS

CRoE REQUIREVENTS FOR:

oMy 117e VARTABLES . 40  PROGRAM 322

END 0F COVBILATION

/7 Do

C-10
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£/ hyn
#S5TNRFCI S A SIMTH
HHyUMs LA o SIMTH
A At

*¥OME O WORD INTFGERS

SUBROUTINE SAZIDELT»sTCOST s TEMD)

A=ARS(TEMO)

H=ARS(TCNST)
A= (A=B) /A

A=pRS(A)
[F(AmCyNl) 10410415

15 IF(A=DELTY 10410420

10 CONT I MUE
? DELT=0.5#NELT
20 CONT INUF

PETURN
END

Cc-11



ACT A

/T,

STORF We TUA L 504
£_FOR "

ANE WRD INTERFRS :
SURRDOUTINE CETUP(EIMAX g EIMINgNVAR s CoTC Aol gL yNVARL ot vall et lll)

DIMENSTON FI“AYIIE}oEIMIN(IZ)v(l3o13)rTC(3)vA(l?s?é)nW(lTJ-L(li)
_DIVVENSTION PHS(3)

RHS(lJ =040
RHS(2) =040

PHE (31 =040
11=16

JJ=28
DO 62 121 ¢ NVAR

J=T4+1 _
PHS(1) = RHESGEII=C(1y JY#EIMIMNIT)

THG{ ) =RHSG (A)=C (2 g I HFIMIN(T)
62 DHS{2) = D& =C (2 JIHEIMINIT)

RUS (1)Y= TCLL)+RMSE(])
Ri1St2)= TC{PY+RMHS{2)

OHG (A} =T (A)+PHE( )
SITNT = QH}(I}/ARS(WH%(l)

SInMZ = RHS (2T /ARS(HS (2} )
SIGN3=PHS(3) /ABSIRHG(3))

ALL1sNYARL) = D0

111=11+1 L ' : _ : L3LPROG
NGO 101N I=1,111 o , \ ‘ 14LPROG
Wi{l)=0g40 - ‘ ' ' 15LEPOG
L{11=0 L ‘ - , 16LPROG

1nl2 CONTINUE

DO 1NNG K=24111
NG 1009 J=lsJJ

AlKsJ) =040 .
1009 CONTINUE

DO 47 I=1aNVAR
¥el+l

AlZa1) Cllax ) #S TGN
Al341) _ = Cl24 )#*51GNH7

n o

Allgl)=C{%s¥)*SIGN3
47 CONTINUF

Al2sNVARLY = RHS(1)¥SIGNL
AlAgNVARL) = RHS (215 [GM2

A{4sNVARL) =RHS (31 #5]I6GN3

RELATION OF TRANSFORMED VARIABLES s SLACKS
AND conTROL LIMITS ' ‘

DO 48 «=1s"VAR

vla¥+d
¥ = CHNVADR
LIy = <)

(eIa) =]4a0

48 A{kIsk]lI=le0
DO 46 I=1 3 NVAR

J=l+a
b6 A{JINVARLY = FIMAX(I)=«EIMIN(E)

WRITE (Nwe1004) :
1n04 FORMAT (124 CATA LOADFD) ' 11 LPROG

c-12



DAGE NNG

PETURN

ERD

C~13



NAGE 010

ZIRIL
xS s Up SETUP
/L Fon 9 g

RN RN IﬁTEGrQS

AAR]THETIC TRACT

-

OB AT INE SCUSTCCOSTZrCOSTI9TCOST0D~”Cs
pIveNs 1O 0{12)99Ct12),DI“AXIlﬁ);DI”INtlzl

C v e L AX e D T Dee Y A

cn5T2=2005T1
COSTI=TCART

——a—

TCHET=0.0
No 28 J=le2

25 TCOST = TC“ST+FC(I)*AR5(D(I?)

NVAYSMYAR]L
DO 26 1=3aNVAYS2
=141
EoaneTID(T) RN (14D (Jy DI /Oy
5 TCOST s TCOST4RC{L) #{140=-COS{S)]
RETURN -
Fol




™ ._“. ~r o~ 1 N

L

ECTADE . Ws  ya " CVARR
// [ ]

#0NE wnn [NMTEGFRS
®APRITHYETIC TRACE

SURPOUTINE CASTIDHNINVAXSDININSASPC)

A(17+26) sPCLL2)

NIMESNSTON NE12) g DIMAX(L2) +DIMINIL2)

NAETA NVARZL2/
NATA CMV/5T4295T78/

IR=7%MVAR
ne 1R T=1 s NVAR

= THNVAR
A‘ l.pJ)=ﬂ.ﬂ

173 CONT INUE
NO 10 IT=1s2

19 6117 = PCITI*¥N{IT)/ARS(DUIT)

MYAKENYAR=]

NE 20 IT=44NVAM 2
IT1=1T+1

S = SOQT(W(ITI*D(IT]+D(IT1}*DITT111/CHU

S = SI%(S P/ LSRCNY Y

A{Ls1T1) = OC{ITLI®O{TITLING
FAS A{leIT}=0C(]TI*DIITI*S

BC 27 T=1yNVAR
K= 14+HVAR

95 A{la¥)t==Al1ls])
PETURN

)

C-15
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// hunp ] I

ASTORE WS A Y SCOST
/S FOR : ’ . R

WONE woRn [MTENFRS -
SURROUTINE TORQ(NVARC D TCoROLLTIYAUTSPITT)

DIVMENSION C{3A413)sN(22)TC(3)
ROLLT=040 R

YA'.‘;fT=0.0

'-‘-‘ITT=(‘;.0

nO 73 l1=1.MNVAR
J=l+]

ROLLT=POLLT+C{1e %D
PITT=PITT+C (22 J)%D(]) ) ] -

773 YAWT=YALUT+C (20 J1 %D}
RCLLT=ROLL T=TC (1}

YART=YAUT=TC(2)
OITT=0(TT=TC(3)

HETUYRN
Frn

C-16



DAMEY 012

/7 Duyp

BETADFE WS AT TORQ
[/ FOR

wOME HNRD IMTEGERS
SURROUTINE FINM!EIMAX!EIVIHvNVARaDH’DELTyDI“AK-“I”INJ

DIMENSTON EI&AX(IZ);FIMIN(lZIg“D(lZJ;DINAX(12}yW§V Mit2)
NG 57 J=1sNVAR

SIvax(I) = DO (T +DELTH*(DIFAX (I =DIMINTT D)
CIvINGI) = SO I )=DELT®(DIMAX(T)=OIMEIMIT))

57 CONT INUE

NG 51 I=1sNVAR
TEMP = EIMAX({I)=DIMAXLT)

IF{TEMR)BR 458,54
D4 Elvax(l) = DIrAX{T)

5A TEMP = EIMIN(T)=DIMIN(L]
IF{TEYD 159451451

59 FIvIM(TY = NIVINGD)

51 COMT INUE
NG &2 I=448 s 2
J=1-1

A = SQDT{FIMAX(IJ*EI”AXCI)+EIVhX(J)*FI”AN(J))
1IF({A=NIvAX{1)156456453

51 COMT INUE
El:apaxt{1] F1vAX (T)*DIMAX (T)/A

(N

FIvaxt.)) EIMAX(JIRDIMAX (J)/A

56 A = SrRT(FIVINCIIRELATN(IV+EIMINCIIVRET ) )
5= ABS(DIMIN(L)) ‘
IF(A=0)52452455

54 FIIN(I)=FIINUT ) *R/A
ELAINGIY=CIMIN(JI*B/A

52 4 = SORT(FI“INIJ)*FI“IN(J)+EIﬁAX{I)*EIMAX(I})
[F{A=T)60,60461

&1 EIMINGS) = FIMINCJII#B/A
CIMAX(]) = EIMAX(]I*B/A

£0 A = SOPT(“IVIFEI)*FIVIN(I)+ETVAX{J)*FI“ﬁY(Jl}
1F{r=) 62462463

&3 SIMINGD) EIMIN(TIRR/A
celAX () FIMAX(JI¥RSA

Hon

52 CONT ITNUE
RETURMN

=an

C-17



DACE 0173

/7 DU
#STORE WS T YA BN
L/ _EDR

BOVE LNRD [NTEGERS S
SIBROUTING CYARS (L " WAT sASDGEIMINEIMAX s HVART)

MIMENETOY L {176 i17926)0 e D017 FIMINILIZ2)FI¥AXL12)
[=VvaR+3 :

DC 55 I=1a1
K= J+1

M= ()
IF { ll‘t_‘h‘l'\.‘f}l\lR) Sy FHe T4

b A DI = Alv ¢ IVARL ) +FINVIN{M)

G To e

T4 Mo ehi AR
Diry = FIMAX(N)}=A{XsNYVAR])

55 CONTINUE
N TYRY

END

C-18



DAGE 015
—

/7 DU _
FSTOARFE g A CDET
L4 _ED® .

HOME AaRn I TELFIS
$ADTTHVETIC TRACE

G4ELFRL0O

#NAVE SGLTN
#% SOLUTIQN DUASE

NN

SURRAUTIME SnL TN INVARL 9 MY AR D)

LINFAR prRoawavaIng FOR THE 1120 ==SalJTIGHN

55LPRCG

MIMEMSTON D12)
COMMON A11T7476) 9 (17 oL (17 el lTsJdslTolui

CONM MIVAX(L2YeD T (12 WPC(12)

COMYOY FTAX (121 IMIN(1219C (3013} TC{3) o DELTHTCOSTPCOET 100012

gHaLER00G
aYitoG

S0LPROG -
31LPROG

B2LPR2G

53LPRCG

B4LPROG
55LVRUG

SELEROG
HTLERTS

? FORMAT(PIDsFP 4}
5 FORMAT(T44F20.8)
fOEOARMAT ]IV IVFEASIRLE)
T FORYAT ({26 VARTARLE VALUE )
o TORMATI1L FUSCTIONALSF20408,9//)
o OFQRVAT {26 MAGLATLE SHAD. COST)
ING FORYAT(1H )
101 FORAT {258 1TTFR. FUNCTIOMAL VAR«
TN EORVAT(OM UFARTALE )
12 FARYAT (1 Y LINROUNDEDR)

CALL DATSEW (T.,M¥15%W1

BRILPRI0

GO TO (770 7NT Y YIS
TNl CONTIMNUE '

WRITE[I910T1) 59 LPROG
700 CONTIMUE
V=0 6OLPRUG
CALY DATSwW{]4]5%) &IL2ROG &
G2 TO (6087 2) 8159 H2LPROG
22 1=1 52LPEIG
23 1=1+1 A4LPROG
IF(I=1TI) 7 4e40ea0 LOL°REG
2o IF(LITII?2425,23 66LPROG
25 NG 27 d=l..)! L£TL2ROG
FLA{ T wd M) 2627028 H8LPROG
26 AUIITe =MLl Tad)=A(Ly)) 6SLPROG
27 CONMTINUE TOLPROG
no In 23 Z1ILPRQG
47 v=111 T2LFROG
G J=D TALPRUG
TR TP TaLPRGO
LLie)= _25LPPCG
L2 =+ T6LPROG
[F(d=i Y] aBadD TILRPRCG
41 IF{A(Y o)) 43002042 TELPROG
47 TF (VA (v g il )b2eh2907 [GLERO
47 Wi t=A{Y el ROLPROG
Ltet=) B1LPROG
GO TR 4? 82LPROCG
45 [F(L{MI}nnab2a46 BILPRGE
0k vdzl{¥) 34LPROG
NG 120 [=7.11 BH5LPROG
IF(A(T ) I120e120212] B6LPROG
120 CoNTIMYE BILPRWG

'c-19



AGE N1g

WRITF{IWa130)

HHLENUG

ETO0 AL WG
121 1= GOLPRCE
Jr=n G1LOROG
5% I=1+1 S2LPRoB
TF({1=111524R2s586 SALPROG
G2 JF{A(] e J)YIED5045] CHlLPRR0
81 X=A{IlaJJ)/ALTsKJ) Q5L PROG
[F{JK)85453455 S6LPREG
55 IF{X=¥"1V)153,50950 S7LFPRCG
59 XINsY YHLPROG
Jr=1 YGLORUG
G) IC &80 100LPROG
5y X=A{JK ¢ J) 101LPRTG
L{Jry=we) 102LPRUG
PO 87 t=1e111 153LP20G
57 W{Ti=A{Tak 1) 104LPRWG
TJ= K= C1NELPROG
DO 50 J=1,1) 136LER0G
NO 5¢ g=1lsJ:) 107LPROG -
IF(AL I 11152,589458 108 PROG
5Q IS(W(1)115804594580 109L2ROG
okatd) A(IyJ)-A(I,JJ—”(IJ*(A(JKsQJ/X) I10LPROG
50 CONTINUE 1:1LERCG
[J=JKk+1 112LPROG
NO 61 1=1s111 113LPROG
Ny 61 d=laJJ 114LPROG
TE(ALJC s JIYADE6146D 115LPROG
60 TF{W(1))1600,61+600 116LPR06G
£ AlTed)mAlT s ) =W (T )#(ALIKY I /X) 117LPROG
61 CONTINUE ‘ 1i8LPROG
‘ DO 205 J=1s.2J 119LPROG
205 A(JKs JI=AL IV e ) /X 120LPROG
TACII LD 121LPROG
A0 TO (702703 ) $MISH
779 CONTINUE
”?ITE(IW;lQR)KKKoAIK Julak (JK) 122LPRGG
772 CONTINUGE
CALL DATSW{Ls]1SWL 123LPROG -
GO TO (T70+44) 15V 124LPRCG
67 1F(K=1170s70s63 125LPRCG
&3 1J=J0-1 ‘ 126LPRCG .
NG g8 =1l 127LPRCG
IF(A!K;J)—.ODGI)&S;&%;&& 128LPROG
£8 rONTIMIE 1-9LPROG
WRITE(IW,e103) 130LPROG
ng 121 J=1,..1 131LPROG
137 A(IITs)=na0 132LPROG
vzl : 133LPROG
KvK=0 124LPROG
A0 IO 44 135LPROG
56 WRITE(IWss) L 136LPROG
PAUSE 137LPROG
70 WRITE(IwWsR ) ALLeJI) 138LPROG
' GO TO (704,708)sMISW
705  CONTINLE
WwRITE(IW 7} 139LPROG
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SAGE 17 e
NG O71 1=2411 140LPROG
7L OURITE(IwW S LI sAlTadd) 141LPROG
T4 CONTINUFE
CALL DATSW(Z415WI 142LPROG
£0 10 (72.75)e18% 143LPRCG
T2 WRITF (T2 ) 144LPROG
1J=sJu-1 145%LPRIG
DO 74 J=lwliy . 146LPROG !
IE(A{)a )V T2 7473 14712306
73 WRITE(1We5) Jehtlsd) 148LPRCG
T4 CONTINIE 14SLPRSG
75 CALL NATSW{2,1SW) | 160LOROG
O TN (TR BO1a18W 151LPROG
74 TJd=ad=1 152LPRAG
< DUMMY GEAN Tn FFED BRI ANK CARD.TQ THFE PUNCHING STATIQN OF THE 142 1953LPROG
RPEAN{Z45) ‘ 194LPROG
DO 77 d=la1 1551 PR0G
NO 77 I=1s111 156LPRWG
IF{A(T 4 d) 78477278 15 7L PRUG
72 WRITE(292) TedsAlTsd) 158LPRUG
77 _CONTIMUS 15GLPR0G
WRITE(2,100) 160LPRYG
B0 90 1=1e111 161LPROG
QN WRITE(2s2)14LIIYsA(IsdI) 162LPRUG
20 CALL DATSW({RelSW) ' 1631LPROG
. AO T (R1eR2)4ISW . 1641LPRUG
21 RETHRY
a2 CALL NATSY (AsISW) 166LPR0OG
CO IO (83.24) 48U 167LPROG
a3 CALL LIN¥(RIAKT) 159PLZR0G
a4y CALL FXTT 1691L2RQG6 ¢
FrD 17GLRPREG

c-21



NORTHROP SERVICES, INC. — TR-1246

Appendix D

SHUTTLE NAR DATA



NORTHRCOP SERVICES, INC.

m =°1,313,800.

I, = 30,812,000.
I, = 12,§82,ooo.
1,, = 316,950,000,
S, g = 249.91
b g = 32.8
g = 31,233
g = 9.77
6 = 53.2
0 .
U = 398.
- O
W = 7.55.
o
| Vo= 398,
Cyg = ~2.567
Cygp = +1092
Cygay = -2781
Cysensr, = *3562

CYGe4L = 1.505

Cygest, = 1+505

TR-1246

SHUTTLE ASCENT DATA

C

YP:

Ces

C

L8r
Cosel ~
C£6e23L
C6e23D

Clﬁe&L %

C

nf

nér

C

nde
Cn6223L =
Cn6e4L =

CnGeSL =

26e3L

MAX Q
= 0..

= 04217
.07479
= ,1063
=.,02295
2502

-.3165

= 1.249

= -.1019
Q= —-1831
-.377
~1,158

-1.158

= ,00035 nt/deg
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NAR CONTROL SCHEME MAX Q

e Torque Command

-~

¢ AIPP+A0¢¢

b= A T ALV Ay Y

e Signal Distribution Scheme

~

el = 6e23D = 2¢

6R = 5¢
§e23L = ¥

-~ 1 ~
Se4l = ¥2 (b= 5 ¢)
§eSL = /I (b + 3 )



